Children Under 5 Years as Predicting Dengue Transmission in Kebumen District, Indonesia: Case Study Mapping Approaches
DOI:
https://doi.org/10.26911/jepublichealth.2025.10.03.02%20Abstract
Background: Dengue disease is still a problem in the world. Factors affecting population main importance for dengue transmission. The dengue cases severity 34.40% in Indonesia, and the study area is an endemic dengue. The study aimed to determine factors causing dengue transmission in the Kebumen district, Central Java Province.
Subjects and Method: A cross-sectional study was conducted in 460 villages in Kebumen district, Central Java. The study was conducted in 2024 by taking dengue data from medical records in the period January 2023 to December 2023. The number of dengue cases during the study period was 395 cases that were diagnosed. The dependent variable is transmission zone. The status village transmission is a number of dengue cases> 2 cases in the village during the study based on medical records. The independent variables are children under 5 years, the incidence rate of dengue, the incidence rate area, the incidence rate density, and population age > 70 years (elderly). Data of dengue cases were obtained from medical record. The data were analyzed with an independent t-test, linear regression test, and survival test (Cox proportional hazards).
Results: The incidence rate averaged 30.17 higher than the government standard, with 10 cases/ 100,000 population for each village, and was higher in March. The population, density, children under 5 years, elderly upper 70 years, incidence density, incidence case, incidence areas, and large no significant differences between village transmission and no transmission p≤0.050, and variable contributing to dengue transmission R2= 0.39 or 39.20%. The hazard time for infection (HR = 0.62; CI95%= 0.46 to 0.83).
Conclusion: The zone is high risk for dengue transmission, 24.6% of the 460. The factors significantly related to dengue transmission in the village as population size, population density, children under 5 years, elderly upper 70 years, incidence density, incidence case, and incidence area contributing to dengue transmission, R2= 0.39. The main factor contributing to dengue transmission is incidence density, β= 69.95.
Keywords:
dengue, transmission, children, mapping, IndonesiaCorrespondence
Nugroho Susanto. Department of Epidemiology, Faculty of Pascasarjana, Universitas Respati Yogyakarta. Jl Tajem KM 1,5 Maguwoharjo, Depok, Sleman, Yogyakarta, Indonesia, 55282.Email: nugroho_susanto@respati.ac.id. Phone: +62 89687773467.
References
Chen-Germán M, Araúz D, Aguilar C, Vega M, Gonzalez C, Gondola J, Dea R, et al. (2024). Detection of dengue virus serotype 4 in Panama after 23 years without circulation. Front Cell Infect Microbiol. 14:1–7. doi:10.3389/fcimb.2024.1467465.
Copaja-Corzo C, Flores-Cohaila J, Tapia-Sequeiros G, Vilchez-Cornejo J, Hueda-Zavaleta M, Vilcarromero S, Dea R, et al. (2024). Risk factors associated with dengue complications and death: A cohort study in Peru. PLoS One. 19(6): e0305689. https://doi.org/10.1371/journal.pone.0305689.
Corrales-Aguilar E. (2024). Clinical characterization of a dengue/Zika outbreak in the Caribbean region of Costa Rica 2017–2018. Front Cell Infect Microbiol. 14:1–15. https://doi.org/10.3389/fcimb.2024.1421744.
da Silva ASA, Carvalho FL, Pinto GA, Saad LSR, Curado MO, Dombroski TCD, Hoffmann-Santos HD, et al. (2024). Signs and symptoms in severe dengue among children aged 0 to 10 years. Einstein (Sao Paulo). 22: eAO0546. https://doi.org/10.31744/einstein_journal/2024ao0546.
Dalvi APR, Gibson G, Ramos AN, Bloch KV, de Sousa GDS, da Silva TLN, Oliveira R, et al. (2023). Sociodemographic and environmental factors associated with dengue, Zika, and chikungunya among adolescents from two Brazilian capitals. PLoS Negl Trop Dis. 17(3):1–17. https://doi.org/10.1371/journal.pntd.0011197.
Farag EA, Jaffrey S, Daraan F, Al-Shamali MHMA, Khan FY, Coyle PV, Rahman A, et al. (2022). Dengue epidemiology in Qatar from 2013–2021: A retrospective study. Trop Med Infect Dis. 7(11): 329. https://doi.org/10.3390/tropicalmed7110329.
Gomes H, de Jesus AG, Quaresma JAS (2023). Identification of risk areas for arboviruses transmitted by Aedes aegypti in northern Brazil: A One Health analysis. One Health. 16: 100499. https://doi.org/10.1016/j.onehlt.2023.100499.
Harsha G, Anish TS, Rajaneesh A, Prasad MK, Mathew R, Mammen PC, Iyer S, et al. (2023). Dengue risk zone mapping of Thiruvananthapuram district, India: A comparison of the AHP and F-AHP methods. GeoJournal. 88(3):2449–2470. doi:10.1007/s10708-022-10757-7.
Kamalrathne T, Amaratunga D, Haigh R, Kodituwakku L, Rupasinghe C, Rana-weera P, Samarasinghe A, et al. (2023). Epidemic and pandemic preparedness and response in a multi-hazard context: COVID-19 pandemic as a point of reference. Int J Environ Res Public Health. 21(9). doi:10.3390/ijerph21091238.
Machado FDN, Draper ADK, Bosco F, Tilman AJP, Soares E, Soares NG, Martins T, et al. (2024). Health Intervention for Dengue Prevention in Dili Municipality, Timor-Leste, 2024 Year. Commun Dis Intell. 48:2018–2022.
Morris R, Wang S (2024). Building a pathway to One Health surveillance and response in Asian countries. Sci One Health. 3:100067. doi:10.1016/j.soh.2024.100067.
Nakase T, Giovanetti M, Obolski U, Lou-renço J (2024). The population at risk of dengue virus transmission has increased due to coupled climate factors and population growth. Commun Earth Environ. 5(1). doi:10.1038/s43247-024-01639-6.
Njotto LL, Senyoni W, Cronie O, Alifrangis M, Stensgaard AS (2024). Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review. PLoS Negl Trop Dis. 2024-Novem:1–22. doi:10.1371/journal.pntd.0012679.
Nosrat C, Altamirano J, Anyamba A, Caldwell JM, Damoah R, Mutuku F, Ndenga B, et al. (2021). Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl Trop Dis. 15(3):e0009182. doi: 10.1371/journal.pntd.0009182.
Pakaya R, Daniel D, Widayani P, Utarini A (2023). Spatial model of Dengue Hemorrhagic Fever (DHF) risk: Scoping review. BMC Public Health. 23(1):1–16. https://doi.org/10.1186/s12889-023-17185-3.
Palmeiro-Silva Y, Aravena-Contreras R, Izcue Gana J, González Tapia R, Kelman I (2024). Climate-related health impact indicators for public health surveillance. Lancet Reg Health Am. 38:100854. doi:10.1016/j.lana.2024.100854.
Prattay KMR, Sarkar MR, Shafiullah AZM, Islam MS, Raihan SZ, Sharmin N (2022). A retrospective study on socio-demographic factors and clinical parameters of dengue. PLoS Negl Trop Dis. 16(4):1–20. doi:10.1371/journal.pntd.0010297.
Pruszynski CA, Buckner EA, Burkett-Cadena ND, Hugo LE, Leal AL, Caragata EP, Holmes M, et al. (2024). Estimation of population age structure and potential for dengue virus transmission. PLoS Negl Trop Dis. 18(8):1–21. doi:10.1371/journal.pntd.0012350.
Reza SB, Shoukhin MMUR, Khan SA, Rahman Dewan SM (2024). Dengue outbreak 2023 in Bangladesh: From a local concern to a global public health issue. Sci Prog. 107(4):1–18. https://doi.org/10.1177/00368504241289462.
Rodriguez LO, Levitt EB, Khamisani N, Nickle S, Izquierdo-Pretel G (2024). Local Transmission of Dengue in South Florida: A Case Report. Cureus. 2024 Jul 25;16(7):e65375. doi: 10.77-59/cureus.65375.
Ryff KR, Rivera A, Rodriguez DM, Santiago GA, Medina FA, Ellis EM, Torres J, et al. (2023). Epidemiologic Trends of Dengue in U.S. Territories, 2010-2020. MMWR Surveill Summ. 2023 May 19;72(4):1-12. doi: 10.15585/mmwr.ss7204a1.
Sajib AH, Akter S, Saha G, Hossain Z (2024). Demographic-environmental effect on dengue outbreaks in 11 countries. PLoS One. 19(9):1–18. doi: 10.1371/journal.pone.0305854.
Sarker I, Karim MR, E-Barket S, Hasan M (2024). Dengue fever mapping in Bangladesh: A spatial modeling approach. Health Sci Rep. 7(6): e2154. https://doi.org/10.1002/hsr2.2154.
Saúl P, Lamberto Y, Chacón N, Cunto MS, Chediack V, Cunto E (2024). Síndrome de Takotsubo en paciente con dengue. Med (B Aires). 84:584-587.
Schumacher AE, Kyu HH, Antony CM, Aravkin AY, Azhar GS, Bisignano C, Dea R, et al. (2024). Global demographic analysis for the Global Burden of Disease Study. The Lancet. 403 (10440): 1989–2056. https://doi.org/10.1016/S0140-6736(24)00476-8.
Siddig EE, Mohamed NS, Ahmed A (2024). Severe coinfection of dengue and malaria: A case report. Clin Case Rep. 12(6):e9079. doi: 10.1002/ccr3.9079.
Susanto N, Hidayani W, Subaeti T (2025). Differences in clinical epidemiology and laboratory indicators in suspect DHF in Kebumen District. J Berk Epidemiol. 13(1):49–57. doi:10.20473/jbe.V13I12025.4957.
Talbot B, Ludwig A, O’Brien SF, Drews SJ, Ogden NH, Kulkarni MA (2024). Analysis of West Nile virus infection in mosquito and human populations. Sci Rep. 14(1):1–15. https://doi.org/10.1038/s41598-024-82739-3.
Taurel AF, Luong CQ, Nguyen TT, Do KQ, Diep TH, Nguyen TV, Le TH, et al. (2023). Age distribution of dengue cases in Southern Vietnam from 2000 to 2015. PLoS Negl Trop Dis. 17(2):1–11. doi:10.1371/journal.pntd.0011137.
WHO (2024). Dengue- Global situation. World Health Organization.
Zohra T, Din M, Ikram A, Bashir A, Jahangir H, Baloch IS, Hussain M, et al. (2024). Demographic and clinical features of dengue infection in Pakistan. Trop Dis Travel Med Vaccines. 10(1):1–8. doi: 10.1186/s40794-024-00221-4.
Downloads
Published
2025-07-16
Issue
Vol. 10 No. 3 (2025)
Section
Articles